

Bio & Smart Sustainable packaging

NATURKLIMA

Dr. Amaya Igartua | Tekniker | 21/11/2023

Contact: amaya.igartua@tekniker.es

Tekniker

MEMBER OF BASQUE RESEARCH
& TECHNOLOGY ALLIANCE

AMi2030
ADVANCED MATERIALS INITIATIVE

IRISS

EUMAT

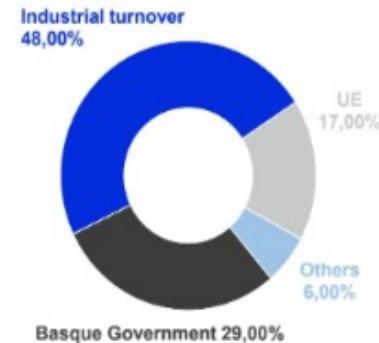
BBI JU

BIO SMART
BIOMATERIALS FOR SMART FOOD PACKAGING

TEKNIKER Introduction

WHO WE ARE

R&D Centre
(not-for-profit Private Foundation) |
Applied research spanning 42 years


**Our mission is to deliver growth
and wellbeing to society at large
via R&D&I and to further the
competitiveness of the business
fabric in a sustainable manner**

Specialised in **Manufacturing**

TEKNIKER IN FIGURES

€ **TOTAL REVENUE TEKNIKER
25.6 M€**

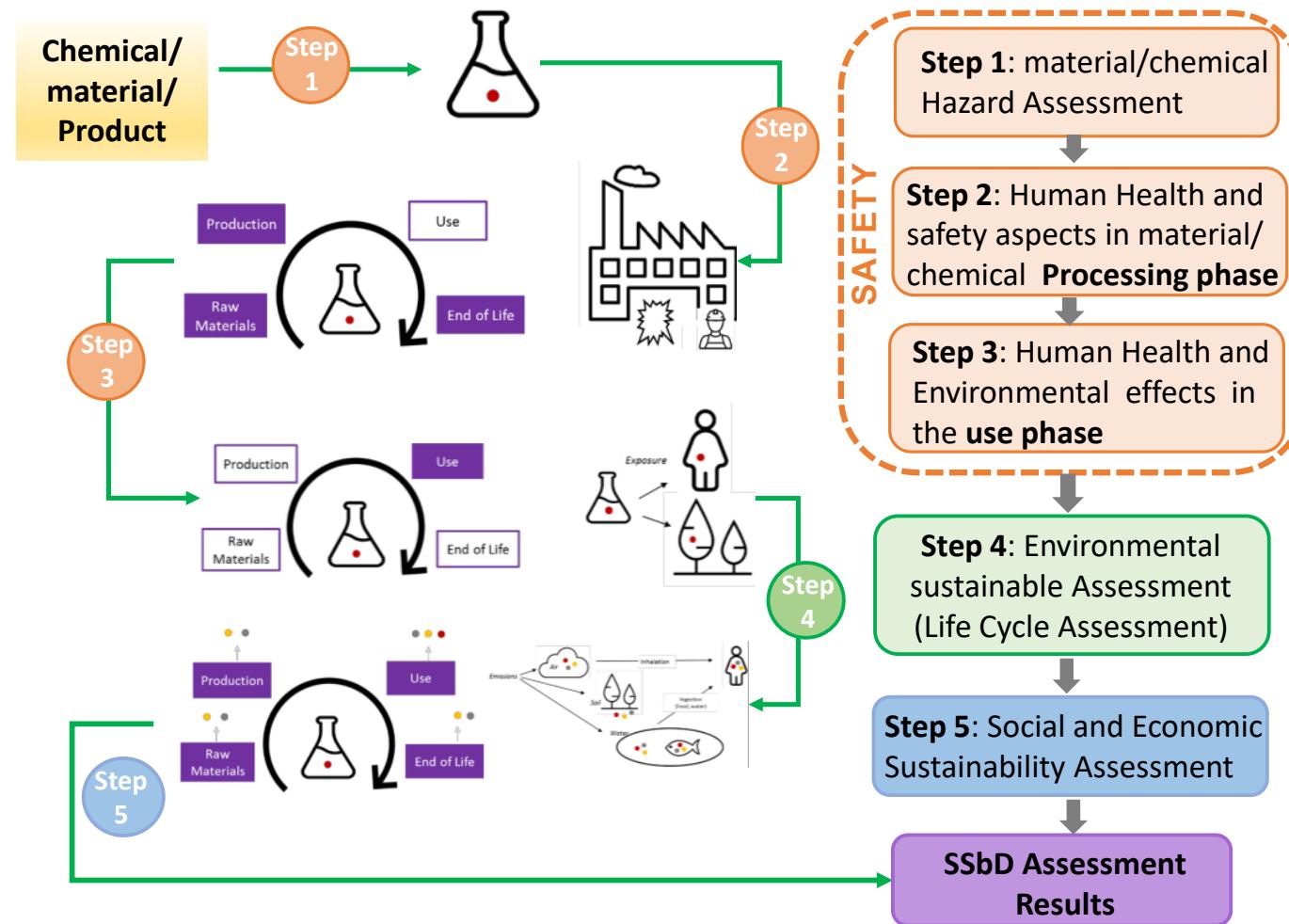
**PEOPLE TEKNIKER
270**

37% Women
63% Men

PhD resources
58 doctors
27 doctoral
students

81% university
degrees

CURRENT PORTFOLIO OF SHAREHOLDINGS IN COMPANIES


€ **TOTAL REVENUES TEKNIKER
+ INVESTED COMPANIES
48.1 M€**

**PEOPLE TEKNIKER
+ INVESTED COMPANIES
366**

€ **TOTAL REVENUES
INVESTED COMPANIES
22.5 M€**

**PEOPLE INVESTED COMPANIES
96**

SSbD JRC proposed Framework [1]

[1] Caldeira et al, Safe and sustainable by design chemicals and materials - **Framework for the definition of criteria and evaluation procedure for chemicals and materials**, 2022, DOI [10.2760/487955 \(online\)](https://doi.org/10.2760/487955)

Bio-based smart packaging for enhanced preservation of food quality

BBI JU contribution: €3,6 million

Duration: May 2017 – December 2021

Feedstock: Sugar, Corn, Polylactic acid, nanoclays

The main goal of **BiOSMART project** is to develop **active and smart** biobased and/or **compostable packages** to meet the needs of both fresh and pre-treated food applications.

To address **future packaging demands** will need to enable light-weighting, **reduced food residues**, easier food monitoring and **longer shelf life**, simplifying waste handling, all without a price premium.

BiOSMART encompasses an approach for **integrating bioactive materials, barrier coatings and sensors** to enlarge food shelf life.

Bio-based smart packaging for enhanced preservation of food quality

Project lead: Tekniker (Spain)

BBI JU contribution: € 3,610,866

Project Website: www.biosmart-project.eu

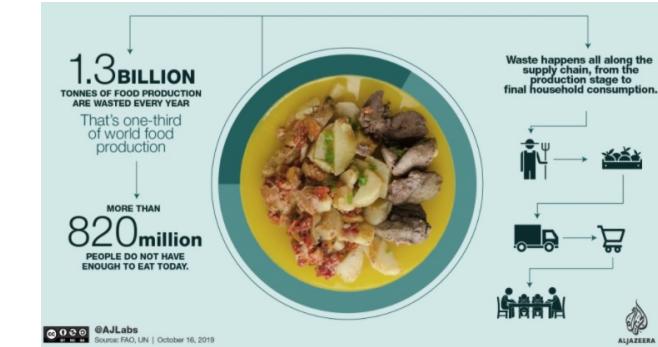

Duration: 01.05.2017 – 31.12.2021

3 UNIs

3 RTOs

3 SMEs

**2 Large
Companies**


Context and Objectives

The Context

- In Europe, **88 Millions Tons** of food are wasted each year, equivalent to the **20 %** of the food produced in Europe.
- Waste food is sent to the waste, degrading the soil with a cost of **150M€**, representing **6% of Green house emissions**.

The Objectives

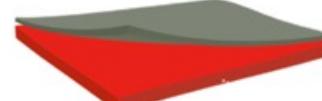
- the development of **bio-based food packaging** that can **monitor and extend shelf-life**, while being **compostable**, **biodegradable** or **recyclable** and friendly for the environment.
- The project has been built with the **collaboration of the complete value chain** through their participation in the Advisory Board, involving the resin manufacturer (Natureworks), the Brand Owner (Unilever) and the Retail (Eroski).

Food lost along the value chain

Technical Approach

Reinforced mechanical properties

Sensors O₂, CO₂ and volatile amines


Antimicrobial properties

Thermal regulation

Barrier coatings Oxygen, water, UV

What	How	Who
The food shelf-life monitoring	The development of oxygen, CO ₂ and amine sensors to monitor internal gas evolution in modified atmosphere food packaging.	TECSENSE unique solutions in sensor technology engineering for a better world
The extension of food self-life	The development of biobased lipopeptides in combination with peptides have antifungal and antimicrobial properties. The lipopeptides can be linked to the surface using cold atmospheric plasma .	Université de Lille University of Reading HEIA-FR HTA-FR
The biobased polymers	The development food approved compostable Polylactic Nanocomposites to improve mechanical and barrier properties. Development of biobased poly(ester-amide) copolymers (PEA).	 HEIA-FR HTA-FR
The functionalities	The development and characterization of superhydrophobic, anti-adherent and the encapsulation of biobased phase change materials to keep temperature longer to preserve food self-life.	 MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE Université de Lille

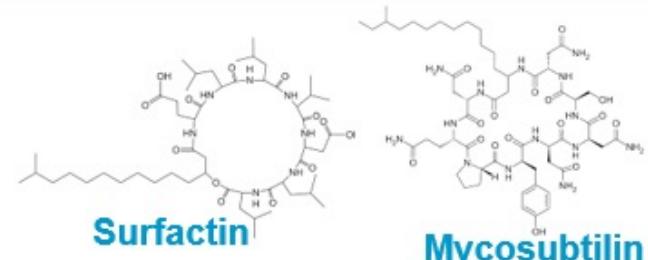
Achievements:

What	How	Who
The barrier layers	The development of food protective barrier coatings (oxygen, water and ultraviolet).	
The packaging	The development of smart biobased plastic MAP packaging, paper biobased laminate and a new concept of smart packaging ready for recycling.	
The Web Application tool	The development of an <u>Application</u> for selection of biobased materials, performance and functionality for commercial <u>needs of the packaging</u> .	

More details: www.biosmart-project.eu

The materials safety assessment Lipopeptides

Biosmart actives lipopeptides and characterization


Biological activities

Antifungal

Antimicrobial

Antiradical and antioxidant

DPPH scavenging activity
and inhibition of superoxide
anion, hydrogen peroxide
and hydroxyl radical

Cytotoxicity
kidney (Vero-SF) and gut
(Caco-2 cells)

Toxicity
In vivo study
Repeated dose 90-day
oral toxicity study in
rodents.
(OECD: Test No. 408)

Bacterial reverse mutation
test/AMES test
(OECD: Test No. 471)

Mutation tests using the
thymidine kinase gene
(OECD: Test No. 490)

Chromosomal aberration
assay (OECD: Test No. 473)

frontiers
in Microbiology

ORIGINAL RESEARCH
published: 11 January 2021
doi: 10.3389/fmicb.2020.581060

Antimicrobial Activity of Lipopeptide
Biosurfactants Against Foodborne
Pathogen and Food Spoilage
Microorganisms and Their
Cytotoxicity

Edited by:
Michael García,
University of Alberta, Canada

Reviewed by:
Michael Leonidas Chikindas,
Konstantina Kourmentza^{1†}, Xavier Gromada², Nicholas Michael³, Charlotte Degraeve⁴,
Gaetan Vanier⁴, Røenn Ravallec², François Coutte^{2,5}, Kimon Andreas Karatzas¹ and
Paula Jauregi^{1†}

OPEN ACCESS

The materials safety assessment: Intelligent system

- Sensors spots:
- O₂ (It is legally approved in the EU for direct contact with food),
- CO₂ (non contact),
- Amine sensor (pending)

ofi
OFFICE FOR FOOD SAFETY
FOOTER: 1020 Vienna, Franz-Josef-Straße 1, Office 201
T: +43 1 700 16 16 - M: +43 660 60 21 0000

Expert Opinion under Austrian Food Legislation

This Expert Opinion replaces the one issued on 21 January 2019, 18 December 2019 and 25 May 2020

Expert Opinion No	1902071-2a	Date	19 February 2021
Client	TecSense GmbH Testastrasse 4 A-8074 Grazbach AUSTRIA		
Application	24 April 2013, 2 November 2018, 20 November 2019 and 5 February 2021		
Product(s)	TS packaging spot Formulation according to writings of 11 July 2013, 4 April 2013, 4 April 2016, 12 Nov. 2016, 4 Dec. 2018 and 12 December 2016		
Description	Polystyrene-based sensor spot for printing on film		

Declaration

With regard to material composition, the requirements laid down in Art. 3(1) of Regulation (EC) No 1935/2004 on materials and articles intended to come into contact with food have been fulfilled.


The products in question, in the composition disclosed and under the condition that they have been properly processed, are admissible materials in accordance with Art. 19(1) of the Austrian Federal Act on Food Safety and Consumer Protection (LMStV/G).

The monomers on which the polymer components of the products are based, as well as any other starting substances, additives or production aids, correspond to the provisions of Arts. 5 and 6 of Commission Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food (ind. supplements).

With regard to the requirements of Regulation (EC) No 450/2009 on active and intelligent materials and articles intended to come into contact with food, both migration tests for the colour components in the sensor spots (including a toxicological assessment of the results) and microanalysis regarding evidence of a depletion zone of the colourant near the surface of the sensor spots were performed – see TecSense DayCheck Sensor Migration Study of 7 November 2018 and 6 August 2018; toxicological assessment of the migration results by toxicologist Dr. Karl Dehne on 15 December 2018 (Contract No 2018-05-07aSV); test report of Josef Stefan Institute of 10 December 2018.

It has been established that the polymer component of the sensor spot is, in fact, designed to constitute a functional barrier for the integrated colourant in accordance with Section 5 (2c) in conjunction with Article 10 (1) of Regulation (EC) 450/2009, i.e. in areas near the surface with possible food contact, a barrier layer is formed that is free from colourants to the greatest possible degree (migration generally below 10 µg/g of food).

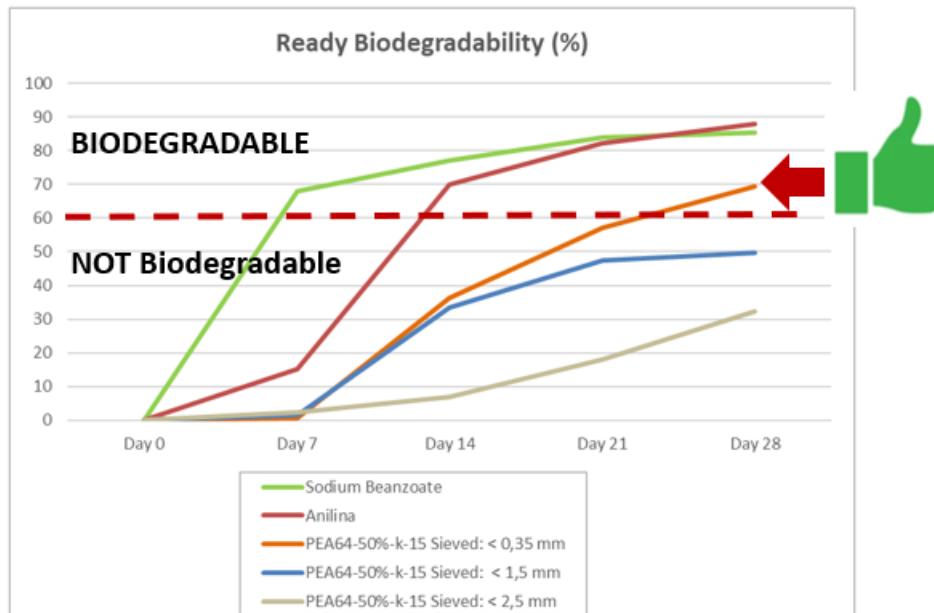
UniSoft Bank Austria AG
1020 Vienna, Franz-Josef-Straße 1, Office 201
1010 Vienna, Postgasse 29a
IBAN: AT66 305 90 04952 131
BIC: AUSTAT1XXX
TIN: 296798
VAT: ATU 000 90 04952 131
MVA: AT00 305 90 04952 131

The Materials Safety Assessment

Food safety regulations

Tray

TRAY				
Supplier	Reference	Grade	Food Contact compliance	Pending information/remarks
NatureWorks	Commercial PLA	Ingeo™ biopolymer 2003D	Compliance with Regulation (EU) No 10/2011 as amended. No SML's for the above referenced grade exist	<u>Rg</u> (EU) No 10/2011 includes OML, should be measured in finished articles. No SML
ITENE	Clay for PLA	O2BLOCK 1200	Approved and listed in Annex I of <u>Rg</u> . (EU) No 10/2011.	No SML. For PLA matrix formulation.
Mitsubishi	PBS	BIO PBS FZ91PM	Approved by FDA (FCN No.1574) and JHOSPA, comply to <u>Rg</u> 10/2011.	Ensure the OML of 10 mg/ dm ² . SML of 1,4-butanediol and Tetrahydrofuran


OVERALL MIGRATION TESTS OF THE TRAY

Test conditions	10 days at 20°C (any food contact at frozen and refrigerated conditions)		
Simulant	Limit (mg/dm ²)	Result	Compliance with Reg (EU) No 10/2011
A	10	0.1 ± 1.2 mg/dm ²	Yes
B	10	0.3 ± 3.7 mg/dm ²	Yes
D2 (iso-octane)	10	0.1 ± 0.0 mg/dm ²	Yes
D2 (ethanol 95% v/v)	10	0.1 ± 1.8 mg/dm ²	Yes

Ecotoxicity, biodegradability and LCA studies

RESULTS: Aquatic Biodegradability

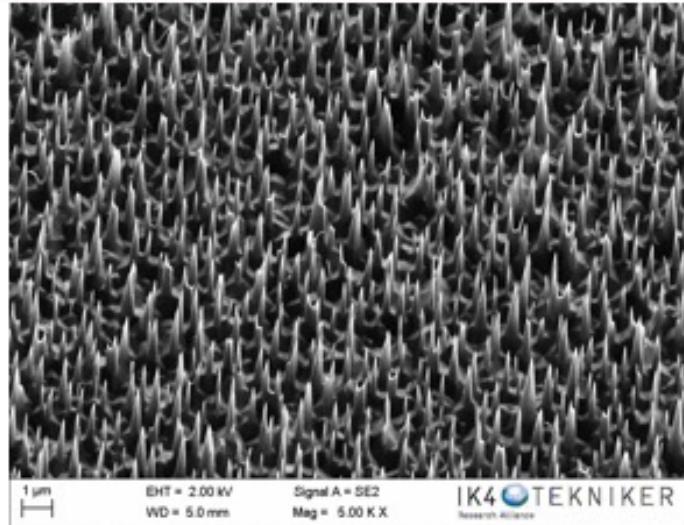
- **Test method:** **OECD 301F Method**, manometric respirometry (oxygen consumption).
- **Reference compounds:** Aniline and Sodium benzoate
- **Sample:** PEA-1 taking into account the sample size (sieving for getting 3 sample sizes)

- **PEA64-50%-k15 sieved <0,35 mm** is the only sample that fulfils the 60% of Biodegradability requirement.
- **Sample size does matter** in biodegradability performance of PEA material. The lower the size, the better biodegradability results

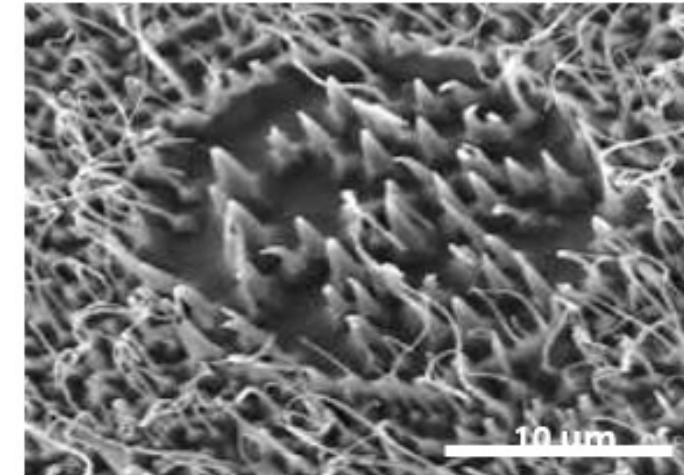
Ecotoxicity, biodegradability and LCA studies

RESULTS: Aquatic Ecotoxicity

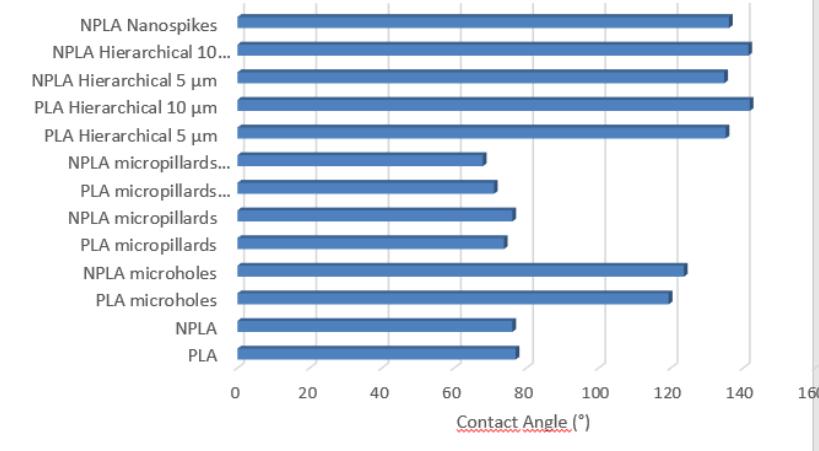
- Sample: **PEA 1, 64_50%**, WAF fractions obtained after stirring
- Solubility test showed that **100 g/l** solution was the most saturated and stable one.



	EL ₅₀	
	PEA	UV light aged PEA
Alga Growth Inhibition test (OECD 201)	>1000 mg/l	>1000 mg/l
Daphnia Magna Acute Immobilization Test (OECD 202)	>1000 mg/l	>1000 mg/l
Vibrio Fischeri: Bioluminescence inhibition assay (ISO 11348-2)	>1000 mg/l	>1000 mg/l
TOXICITY classification	NOT TOXIC	NOT TOXIC



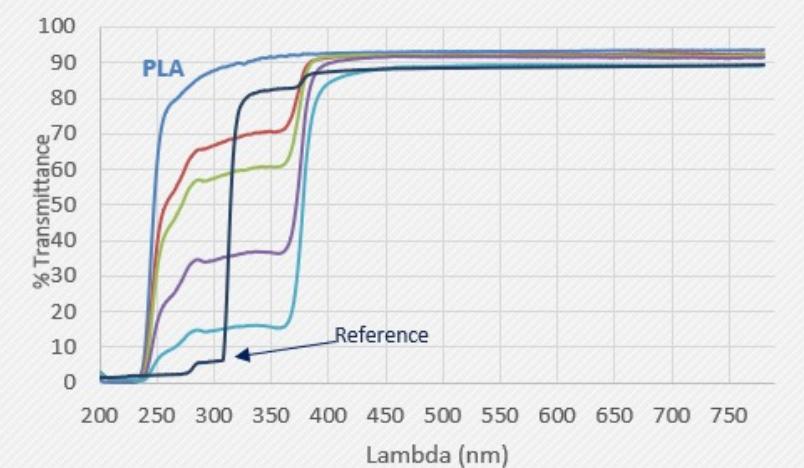
Texturing hydrophobic properties

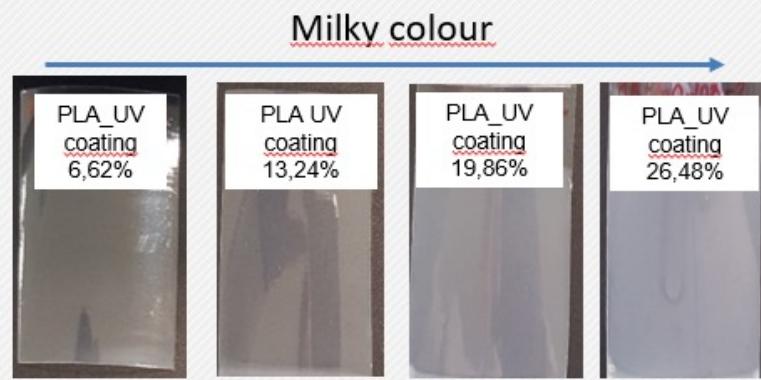

Antibacterial nanospikes in SiO_2

Nanospikes replica in PLA by NIL

1. Topographies with hydrophobic properties

UV protective coatings




A robotic arm with a spray gun is positioned inside a transparent spray booth. The booth has a 'burndala' label on the top left. A gas cylinder is connected to the spray gun. The ITENE logo is in the bottom right corner of the image area.

- Solgel and biobased coatings with dispersed oxide nanoparticles.
- Deep coating and spray application
- Scalable UV barrier

2. Barrier coatings for UV protection

A line graph showing the percentage of transmittance versus wavelength (Lambda) in nanometers. The x-axis ranges from 200 to 750 nm, and the y-axis ranges from 0 to 100%. Several curves are plotted, representing different materials. The 'PLA' curve starts at ~80% transmittance at 250 nm and rises to ~92% at 350 nm. The 'Reference' curve starts at 0% transmittance at 250 nm and rises to ~10% at 350 nm. Other curves (green, blue, black) show higher transmittance than the reference at shorter wavelengths, with the black curve reaching ~95% transmittance at 350 nm.

Four small samples of PLA_UV coating are shown in a row, each with a label indicating its transmittance value: 6,62%, 13,24%, 19,86%, and 26,48%. The samples show a progression from a dark, milky appearance to a lighter, more transparent appearance as the transmittance value increases.

(migration of the metal should be <5 mg /kg)

L 230/22

EN

Official Journal of the European Union

25.8.2016

COMMISSION REGULATION (EU) 2016/1416

of 24 August 2016

amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food

Water and oxygen barrier coatings

 WIPAK

Food approval,
biodegradable

Nanocomposite coating_WIP PILOT
Improvement vs commercial PLA

OTR (0%RH)
ASTM D3985

99.27%

OTR (85%RH)
ASTM D3985

29.39%

Antimicrobial properties

Antibacterial tests

Antibacterial tests: ISO 22196:2011 – Measurement of antibacterial activity on plastics and other non-porous surfaces

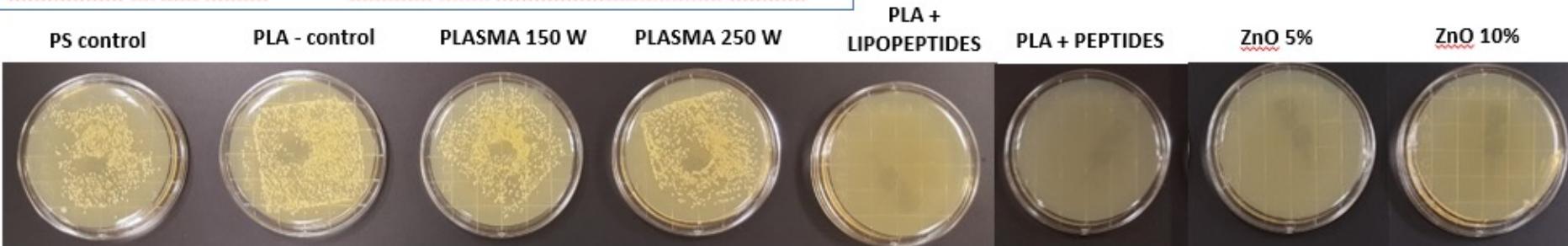
- ✓ Novel methodology was adopted to assess the antibacterial features of BIOSMART materials
- ✓ Adaptation of the experimental procedure described in JIS Z 2801:2012/ISO 22196:2011 standards.
- ✓ The main change is related with the bacteria recovery method: instead of a using a solution of the SCDLP neutralizer, a method based on contact plating is adopted.

WHY?
PROBLEM!!!

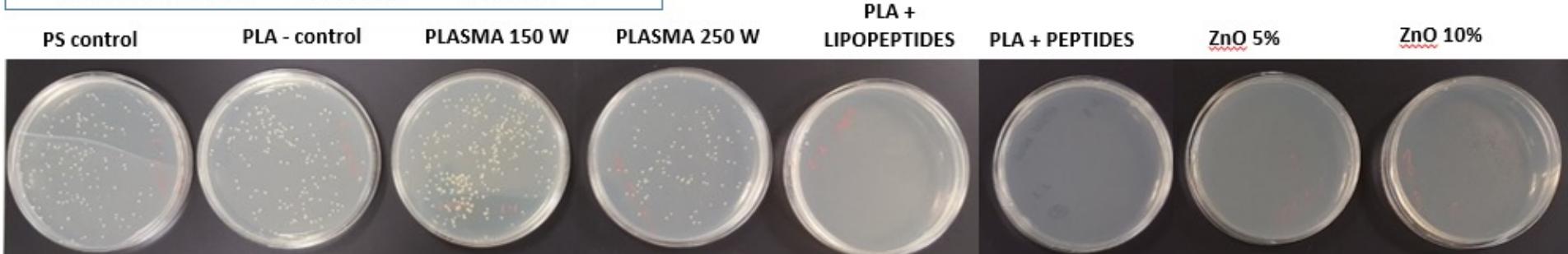
Commercial
plastic samples:
AUTOTEX AM

Claim antibacterial
effect by ISO 22196

PROBLEM!!!


Antimicrobial properties

Antibacterial tests


RESULTS

Evaluation of the cover film in contact with materials by contact plating

NO Bactericidal! NO Bactericidal! NO Bactericidal! NO Bactericidal! Bactericidal! Bactericidal! Bactericidal! Bactericidal!

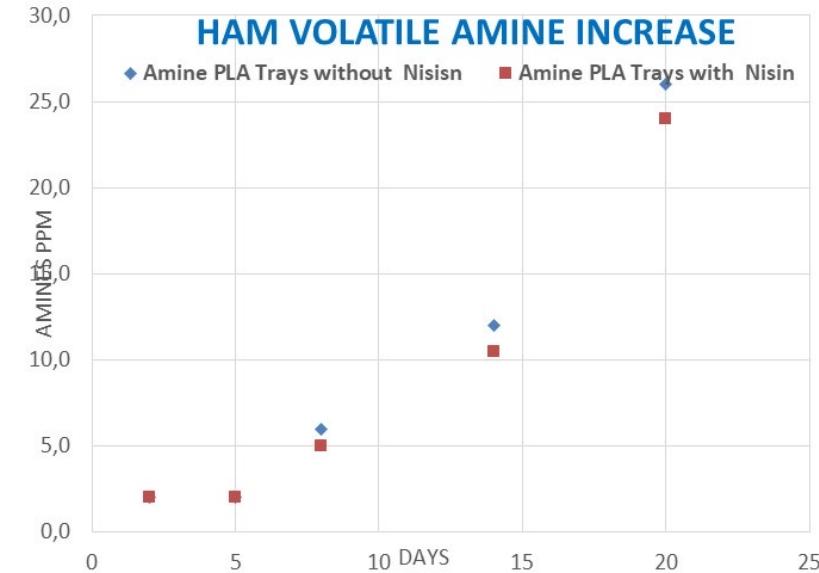
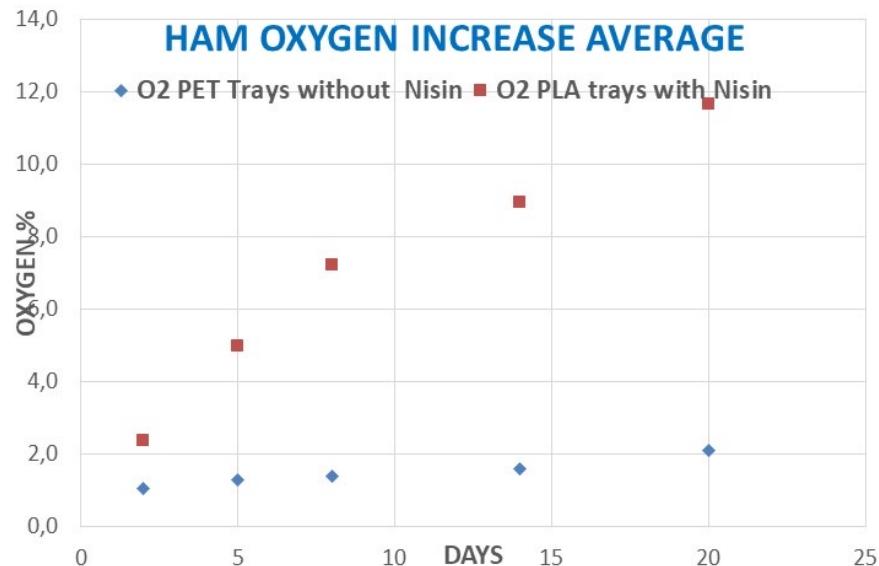
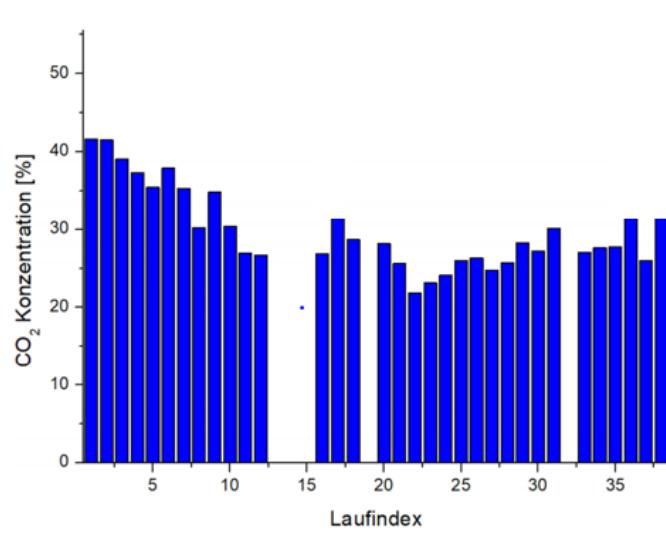
Evaluation of the PBS solution after washing step

Bacteria is present on control groups

No bacteria is present in the PBS used for washing the bactericidal samples

The scale up

The most developed technologies (TRL5, our initial goal) was integrated in final packaging **at industrial relevant conditions (TRL6)**.




This was necessary to perform consumer acceptance tests requiring large number of industrial packaging, with a big effort of the entire Biosmart team.

For each trial under production conditions, at least 1000 m of thermoforming sheet for the trays and 1200 m of top sheet are needed. 100 - 200 m are needed in minimum to set up the printing and packaging machines.

There is still much development work to be done (TRL5-7), which can be continued on the basis of what has been achieved till now.

The sensor monitoring of food self-life ham packaging

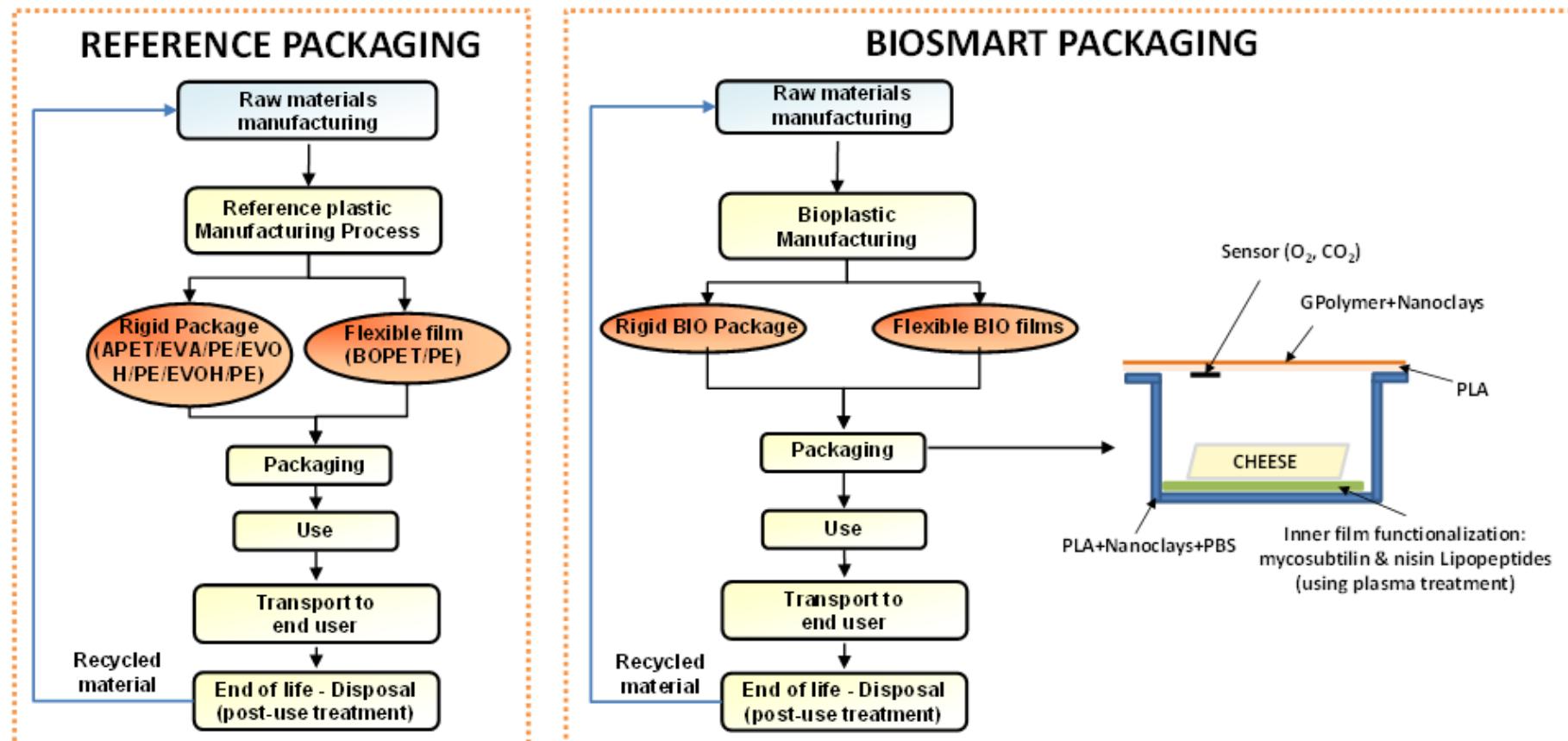
The sensor monitoring of food self-life cheese packaging

**Cheese PLA / PET packages
packed 2021_10_14**

- Influence of Mycosubtilin clearly visible
- PLA with Mycosubtilin day 16 no mold
- Without Mycosubtilin mold visible at day 16, very pronounce at day 38

Sensor system close to serial production

Cheese packages PLA without / with Mycosubtilin / PET day 38



Lifecycle Environmental Assessment

1 kg produced or packaged food as a functional unit.

RESULTS: Lifecycle Environmental Assessment

Step 1: Goal and scope definition

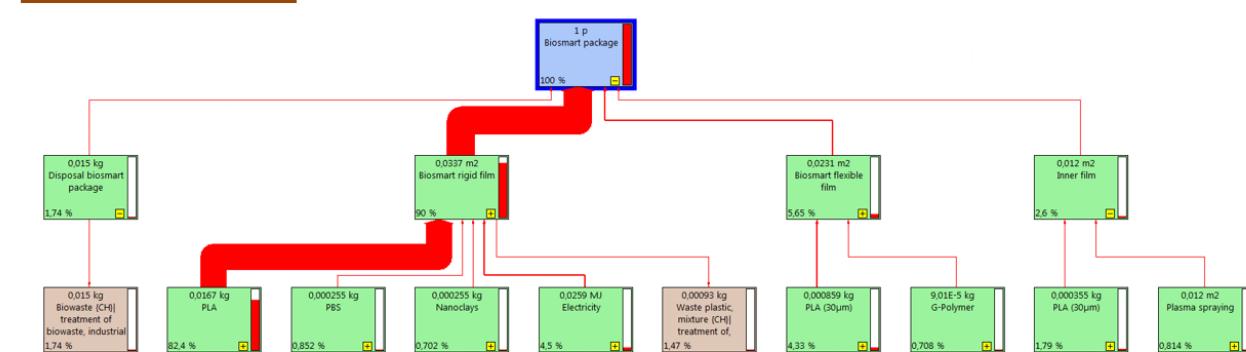

Lifecycle Environmental assessment

1 kg produced or packaged food as a functional unit.

RESULTS: Lifecycle Environmental Assessment

Step 4: Interpretation

Reference package

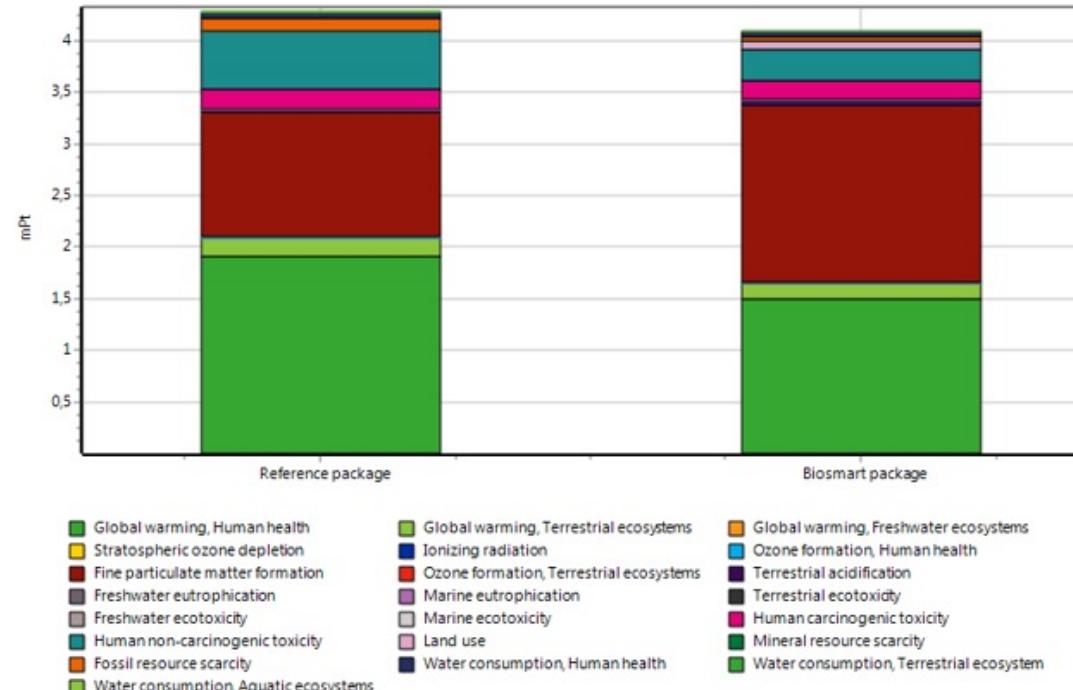


Main environmental impacts of rigid film manufacturing process are due to the production of the **APET** needed to manufacture the rigid tray

RESULTS: Lifecycle Environmental Assessment

Step 4: Interpretation

BIOSMART package


Main environmental impacts of rigid film manufacturing process are due to the production of the **PLA** needed to manufacture the rigid tray

1 kg produced or packaged food as a functional unit.

RESULTS: Lifecycle Environmental Assessment

Step 4: Interpretation

Reference Package vs Biosmart package

Method: ReCiPe 2016 Endpoint (H) V1.04 / World (2010) H/A / Single score
Comparing 1 p 'Reference package' with 1 p 'Biosmart package'

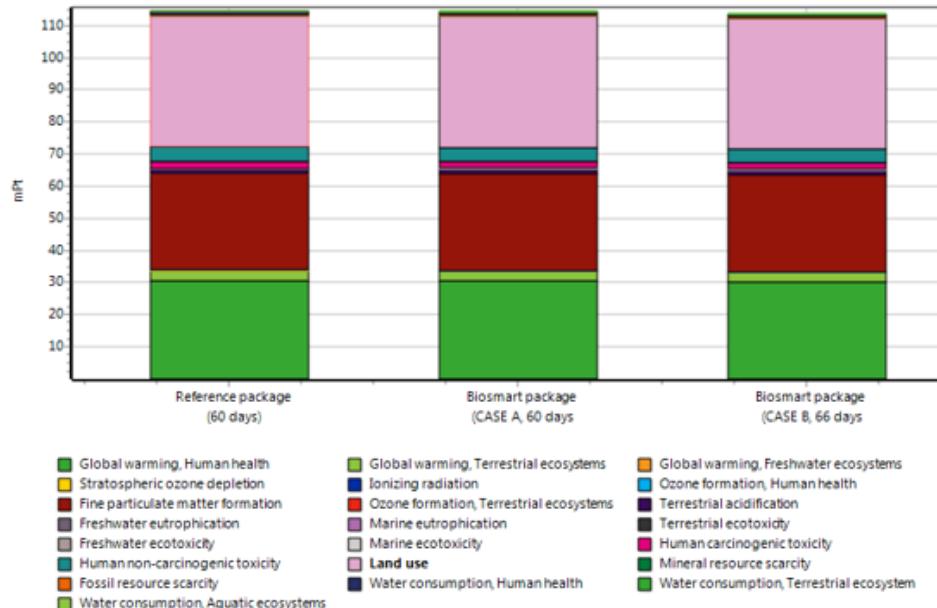
Method ReCiPe 2016	Unit	Reference package	Biosmart package	Impact reduction
		mPt	2,970	2,904
Global warming	Unit	Reference package	Biosmart package	Impact reduction
		CO ₂ eq	0,082	0,066

The total environmental impacts associated to the BIOSMART package (including production and disposal) are lower than the impacts of the REFERENCE package.

Lifecycle Assessment impacts

125g of consumed cheese, including the necessary package to protect this cheese for the defined shelf life before its consumption

Case 2-Biosmart & REFERENCE package including cheese impacts



The **cheese** is the responsible for more than 97% of the package environmental impact.

Lifecycle Assessment impacts

125g of consumed cheese, including the necessary package to protect this cheese for the defined shelf life before its consumption

HYPOTHETICAL STUDY: BIOSMART & REFERENCE package including cheese impacts

Method: ReCiPe 2016 Endpoint (H) V1.04 / World (2010) H/A / Single score

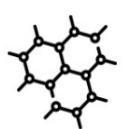
Comparing 1 p 'Reference package (60 days)', 1 p 'Biosmart package (CASE A, 60 days)' and 1 p 'Biosmart package (CASE B, 66 days)'.

Damage category (ReCiPe 2016)	Unit	Reference package (60 days)	Biosmart package (CASE A, 60 days)	Biosmart package (CASE B, 66 days)	BIOSMART Impact Reduction when comparing with reference	
			CASE A	CASE		
Total	mPt	114,5	114,5	113,8	0,1%	0,7%
Human health	mPt	68,1	68,1	67,6	0,1%	0,7%
Ecosystems	mPt	45,8	45,9	45,6	-0,1%	0,5%
Resources	mPt	0,6	0,5	0,5	9,3%	9,9%

Wobal warming	Unit	Reference package (60 days)	Biosmart package (CASE A, 60 days)	Biosmart package (CASE B, 66 days)	BIOSMART Impact Reduction when comparing with reference	
			CASE A	CASE		
	CO ₂ eq.	1,81	1,80	1,78	0,9%	1,5%

- **CASE A (Biosmart and Reference same shelf life 60 days):** almost no differences in the total environmental impact, but in global warming the reduction will be 0,9%.
- **CASE B (Biosmart shelf life 66days; reference 60 days):** A reduction of 0,7% in the total environmental impact is achieved and in global warming the reduction is 1,5%.

Cost Analysis


 BIO SMART PPCC Home Materials ▾ Packaging ▾ Login Register

Plastic Packaging Cost Calculator

Features

Welcome to the Plastic Packaging Cost Calculator (PPCC). The goal is to provide some useful tools for the design of plastic packaging. At the moment the focus is on the co-extruded plastic packaging, where multiple single polymers layers are combined into a packaging foil.

This application is part of the european project **BIO SMART**.

Materials

A database of polymers and adhesives commonly used in plastic packaging. To be able

Packagings

Overview of package designs made publicly available. To

Calculations

Calculation routines to optimize the cost in regards to its barrier properties and

Packaging Details

Compare to...

Gas Prediction

Help

Composition

Package Properties

Currency USD

Name	Thickness μm	Layers Number	Transmission Rates			Cost USD m²	Public	Actions
			Oxygen cm³*μm m²*day*atm	Nitrogen cm³*μm m²*day*atm	Water Vapor g*μm m²*day			
Packaging - Flex	96	3	1	0	2	1.196	Yes	

The exploitable RESULTS

-
- A vertical strip on the left side of the slide shows a close-up of various food packaging materials, including plastic bags and containers, with some text like 'WIPAK' and 'Direct' visible.
- Improvements of the PLA material mechanical and barrier properties concerning thermoformability Pilot scale production of the materials. **ITENE**
 - Surface texturing (hydrophobic coatings), phase change materials and UV barrier coatings, new protocol to evaluate antimicrobial properties, ecotoxicity, biodegradability and Lifecycle Environmental Assessment. **TEKNIKER**
 - Synthesis of PEA (FRI) and thermoforming surface adhesion of nisin, lipopeptides by plasma and scale up and APPLICATION to predict barrier properties, **FRIBOURG**
 - Antimicrobial, antifungal, and antioxidant lipopeptides studying cytotoxicity and food approval. Pilot scale production of lipopeptides, evaluation of packaged samples. **LILLE, LIPOFABRIC, Univ. READING**
 - Development of measurement methods for non-invasive quality control and integration into packaging machines. **TECSENSE, GEA**
 - Evaluation of packaging materials and packaged food from the microbiological and consumer's point of view, **RISE**.
 - BioSmart polymer films. **WIPAK**

Benefits to society and the environment

Benefit 1: Food grade (EFSA) approved biobased plastic (Polylactic acid reinforced with nanoclays) compostable with 20% enhanced mechanical and barrier properties. The food residual and packaging can be jointly composted.

Benefit 2: Sensors (oxygen, CO₂, amine) to monitor food self degradation in modified atmosphere packaging. The O₂ and CO₂ sensors can provide 100% on-line packaging control. EU Food approval and Solar Impulse Solution Efficient label obtained for oxygen sensor. **Zero defects** during packaging manufacturing can reduce the food lost in the value chain.

Benefit 3: The food waste and packaging can be compostable or be transformed to biogas generating energy and heat in combustion engines using cogeneration.

Benefit 4: The retailer and maybe in the future the consumer will be able to monitor the food degradation to control the food self life limits, reducing the food waste and the CO₂ emissions

Contribution to EU policy

-
- A vertical strip on the left side of the slide shows a close-up of various food packaging materials, including plastic bags and containers, some with labels like 'WIPAK' and 'Direct'. The background is blurred with streaks of light, suggesting motion or a display.

Next steps

- Study alternative biobased material Solutions for packaging
- Scale up TRL5-7 packaging smart solutions developed
- Scale up the cost of amine sensor spot, and get the food approval
- Increase barrier protection of biobased Solutions
- Implement recyclable materials in packaging
- Enlarge the number of packaging applications